Mostrar el registro sencillo del ítem
Advanced techniques to compute improper integrals using a CAS
dc.contributor.author | Aguilera-Venegas, Gabriel | |
dc.contributor.author | Galán-García, José Luis | |
dc.contributor.author | Galán-García, María Ángeles | |
dc.contributor.author | Padilla-Domínguez, Yolanda Carmen | |
dc.contributor.author | Rodríguez-Cielos, Pedro | |
dc.contributor.author | Rodríguez-Cielos, Ricardo | |
dc.date.accessioned | 2014-07-16T10:47:39Z | |
dc.date.available | 2014-07-16T10:47:39Z | |
dc.date.created | 2014-07-01 | |
dc.date.issued | 2014-07-16 | |
dc.identifier.uri | http://hdl.handle.net/10630/7850 | |
dc.description.abstract | Let us consider the following types of improper integrals: $$ \int_0^\infty f(t)\:{\rm d}t \qquad ; \qquad \int_{-\infty}^0 f(t)\:{\rm d}t \qquad {\rm and} \qquad \int_{-\infty}^\infty f(t)\:{\rm d}t $$ \medskip Let $F$ be an antiderivative of $f$. The basic approach to compute such integrals involves the following computations: \medskip \begin{eqnarray*} \int_0^\infty f(t)\:{\rm d}t & = & \lim_{m\to\infty} \int_0^m f(t)\:{\rm d}t = \lim_{m\to\infty} \big(F(m)-F(0)\big) \\ \\ \int_{-\infty}^0 f(t)\:{\rm d}t & = & \lim_{m\to-\infty} \int_m^0 f(t)\:{\rm d}t = \lim_{m\to-\infty} \big(F(0)-F(m)\big) \\ \\ \int_{-\infty}^\infty f(t)\:{\rm d}t & = & \int_{-\infty}^0 f(t)\:{\rm d}t + \int_0^\infty f(t)\:{\rm d}t \qquad \mbox{or, in case of convergence,} \\ \\ \int_{-\infty}^\infty f(t)\:{\rm d}t & = & \lim_{m\to\infty} \int_{-m}^m f(t)\:{\rm d}t = \lim_{m\to\infty} \big(F(m)-F(-m)\big) \qquad \mbox{(Cauchy principal value)} \end{eqnarray*} \medskip \noindent But, what happens if an antiderivative $F$ for $f$ or the above limits do not exist? \medskip \noindent For example, for \quad $\displaystyle\int_0^\infty\frac{{\rm sin}(at)}{t}\:{\rm d}t$ \quad ; \quad $\displaystyle\int_0^\infty\frac{{\rm cos}(at)-{\rm cos}(bt)}{t}\:{\rm d}t$ \quad {\rm or} \quad $\displaystyle\int_{-\infty}^\infty\frac{{\rm cos}(at)}{t^2+1}\:{\rm d}t$ \qquad the antiderivatives can not be computed. Hence, the above procedures cannot be used for these examples. \medskip In this work we will deal with advance techniques to compute this kind of improper integrals using a {\sc Cas}. Laplace and Fourier transforms or Residue Theorem in Complex Analysis are some advance techniques which can be used for this matter. \medskip We will introduce the file \textbf{\tt ImproperIntegrals.mth}, developed in {\sc Derive} 6, which deals with such computations. \medskip Some {\sc Cas} use different rules for computing integrations. For example {\sc Rubi} system, a {\bf ru}le-{\bf b}ased {\bf i}ntegrator developed by Albert Rich (see {\tt http://www.apmaths.uwo.ca/\~{ }arich/}), is a very powerful system for computing integrals using rules. We will be able to develop new rules schemes for some improper integrals using {\tt ImproperIntegrals.mth}. These new rules can extend the types of improper integrals that a {\sc Cas} can compute. | es_ES |
dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Fourier, Transformaciones de | es_ES |
dc.subject | Laplace, Transformación de | es_ES |
dc.subject.other | Improper integrals | es_ES |
dc.subject.other | CAS | es_ES |
dc.subject.other | Laplace Transform | es_ES |
dc.subject.other | Fourier Transform | es_ES |
dc.subject.other | Residue Theorem | es_ES |
dc.title | Advanced techniques to compute improper integrals using a CAS | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.relation.eventtitle | Technology and its Integration in Mathematics Education TIME 2014 | es_ES |
dc.relation.eventplace | Krems, Austria | es_ES |
dc.relation.eventdate | 1-5/07/2014 | es_ES |