JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Primitive graph algebras

    • Autor
      Abrams, Gene
    • Fecha
      2014-06-18
    • Resumen
      Let $E = (E^0, E^1, s,r)$ be an arbitrary directed graph (i.e., no restriction is placed on the cardinality of $E^0$, or of $E^1$, or of $s^{-1}(v)$ for $v\in E^0$). Let $L_K(E)$ denote the Leavitt path algebra of $E$ with coefficients in a field $K$, and let $C^*(E)$ denote the graph C$^*$-algebra of $E$. % (Note: here $C^*(E)$ need not be separable.) We give necessary and sufficient conditions on $E$ so that $L_K(E)$ is primitive. (This is joint work with Jason Bell and K.M. Rangaswamy.) We then show that these same conditions are precisely the necessary and sufficient conditions on $E$ so that $C^*(E)$ is primitive. (This is joint work with Mark Tomforde.) This situation gives yet another example of algebraic / analytic properties of the graph algebras $L_K(E)$ and $C^*(E)$ for which the graph conditions equivalent to said property are identical, but for which the proof / techniques used are significantly different. In the Leavitt path algebra setting, we show how this result allows for the easy construction of a large collection of prime, non-primitive von Neumann regular algebras (thereby giving a systematic answer to a decades-old question of Kaplansky). In the graph C$^*$-algebra setting, we show how this result allows for the easy construction of a large collection of prime, non-primitive C$^*$-algebras (thereby giving a systematic answer to a decades-old question of Dixmier).
    • URI
      http://hdl.handle.net/10630/7688
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    CartelConfAbrams2014.pdf (127.9Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA