JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    FMSans: An efficient approach for constraints removal and parallel analysis of feature models

    • Autor
      Horcas-Aguilera, José MiguelAutoridad Universidad de Málaga; Ballesteros-Gómez, JoaquínAutoridad Universidad de Málaga; Pinto-Alarcón, MónicaAutoridad Universidad de Málaga; Fuentes-Fernández, LidiaAutoridad Universidad de Málaga
    • Fecha
      2025-04-10
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Soporte lógico de sistemas; Lenguajes de programación
    • Resumen
      Cross-tree constraints help to compact feature models by using arbitrary propositional logic formulas, which efficiently capture interdependencies between features. However, the existence of these constraints increases the complexity of reasoning about feature models, whether we use SAT solvers or compile the model to a binary decision diagram for efficient analyses. Although some works have tried to refactor constraints to eliminate them, they deal only with simple constraints (i.e., requires and excludes) or require introducing an additional set of features, increasing the size and complexity of the resulting feature model. This paper presents an approach that eliminates all the cross-tree constraints in regular boolean feature models, including arbitrary constraints in propositional logic formulas. Our approach for removing constraints consists of splitting the semantics of feature models into orthogonal disjoint feature subtrees, which are then analyzed in parallel to alleviate the exponential blow-up in memory of the resulting feature tree. We propose a codification of the constraints and define and analyze different heuristics for constraints ordering to reduce the complexity of identifying the valid disjoint subtrees when removing constraints.
    • URI
      https://hdl.handle.net/10630/38488
    • DOI
      https://dx.doi.org/10.1145/3579027.3608981
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0164121225001025-main.pdf (4.679Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA