Mostrar el registro sencillo del ítem

dc.contributor.authorCuesta-Vargas, Antonio 
dc.contributor.authorArjona-Caballero, José María
dc.contributor.authorOlveira-Fuster, Gabriel María 
dc.contributor.authorDe Luis Román, Daniel
dc.contributor.authorBellido-Guerrero, Diego
dc.contributor.authorGarcía-Almeida, José Manuel 
dc.date.accessioned2025-04-24T10:22:33Z
dc.date.available2025-04-24T10:22:33Z
dc.date.issued2025-04-13
dc.identifier.citationCuesta-Vargas, A.; Arjona-Caballero, J.M.; Olveira, G.; de Luis Román, D.; Bellido-Guerrero, D.; García-Almeida, J.M. Automatic Analysis of Ultrasound Images to Estimate Subcutaneous and Visceral Fat and Muscle Tissue in Patients with Suspected Malnutrition. Diagnostics 2025, 15, 988. https://doi.org/10.3390/diagnostics15080988es_ES
dc.identifier.urihttps://hdl.handle.net/10630/38475
dc.description.abstractBackground: Malnutrition is a prevalent condition associated with adverse health outcomes, requiring the accurate assessment of muscle composition and fat distribution. Methods: This study presents a novel method for the automatic analysis of ultrasound images to estimate subcutaneous and visceral fat, as well as muscle, in patients with suspected malnutrition. The proposed system utilizes computer vision techniques to segment regions of interest (ROIs), calculate relevant variables, and store data for clinical evaluation. Unlike traditional segmentation methods that rely solely on thresholding or pre-defined masks, our method employs an iterative hierarchical approach to refine contour detection and improve localization accuracy. A dataset of abdominal and leg ultrasound images, captured in both longitudinal and transversal planes, was analyzed. Results: Results showed higher precision for longitudinal scans compared to transversal scans, particularly for length-related variables, with the Y-axis Vastus intermediate achieving a precision of 92.87%. However, area-based measurements demonstrated lower precision due to differences between manual adjustments by experts and automatic geometric approximations. Conclusions: These findings highlight the system’s potential for clinical use while emphasizing the need for further algorithmic refinements to improve precision in area calculations.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDiagnóstico por imagenes_ES
dc.subjectMalnutriciónes_ES
dc.subjectCuerpo humano - Composiciónes_ES
dc.subjectMúsculoses_ES
dc.subjectVisión por ordenadores_ES
dc.subjectInteligencia artificiales_ES
dc.subject.otherUltrasound imaginges_ES
dc.subject.otherMuscle compositiones_ES
dc.subject.otherMalnutritiones_ES
dc.subject.otherImage segmentationes_ES
dc.subject.otherComputer visiones_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherClinical diagnosticses_ES
dc.titleAutomatic Analysis of Ultrasound Images to Estimate Subcutaneous and Visceral Fat and Muscle Tissue in Patients with Suspected Malnutrition.es_ES
dc.typejournal articlees_ES
dc.identifier.doi10.3390/diagnostics15080988
dc.type.hasVersionVoRes_ES
dc.departamentoFisioterapiaes_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem