JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Automatic Analysis of Ultrasound Images to Estimate Subcutaneous and Visceral Fat and Muscle Tissue in Patients with Suspected Malnutrition.

    • Autor
      Cuesta-Vargas, AntonioAutoridad Universidad de Málaga; Arjona-Caballero, José María; Olveira-Fuster, Gabriel MaríaAutoridad Universidad de Málaga; De Luis Román, Daniel; Bellido-Guerrero, Diego; García-Almeida, José ManuelAutoridad Universidad de Málaga
    • Fecha
      2025-04-13
    • Editorial/Editor
      MDPI
    • Palabras clave
      Diagnóstico por imagen; Malnutrición; Cuerpo humano - Composición; Músculos; Visión por ordenador; Inteligencia artificial
    • Resumen
      Background: Malnutrition is a prevalent condition associated with adverse health outcomes, requiring the accurate assessment of muscle composition and fat distribution. Methods: This study presents a novel method for the automatic analysis of ultrasound images to estimate subcutaneous and visceral fat, as well as muscle, in patients with suspected malnutrition. The proposed system utilizes computer vision techniques to segment regions of interest (ROIs), calculate relevant variables, and store data for clinical evaluation. Unlike traditional segmentation methods that rely solely on thresholding or pre-defined masks, our method employs an iterative hierarchical approach to refine contour detection and improve localization accuracy. A dataset of abdominal and leg ultrasound images, captured in both longitudinal and transversal planes, was analyzed. Results: Results showed higher precision for longitudinal scans compared to transversal scans, particularly for length-related variables, with the Y-axis Vastus intermediate achieving a precision of 92.87%. However, area-based measurements demonstrated lower precision due to differences between manual adjustments by experts and automatic geometric approximations. Conclusions: These findings highlight the system’s potential for clinical use while emphasizing the need for further algorithmic refinements to improve precision in area calculations.
    • URI
      https://hdl.handle.net/10630/38475
    • DOI
      https://dx.doi.org/10.3390/diagnostics15080988
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2025 Automatic Analysis of Ultrasound Images to Estimate Subcutaneous and Visceral Fat and Muscle Tissue in Patients with Suspected Malnutrition.pdf (2.204Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA