JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem

    Quality-driven management of next-generation mobile networks for advanced multimedia services.

    • Autor
      Peñaherrera-Pulla, Oswaldo Sebastián
    • Director/es
      Fortes-Rodríguez, SergioAutoridad Universidad de Málaga; Barco-Moreno, RaquelAutoridad Universidad de Málaga
    • Fecha
      2025
    • Fecha de lectura
      2025-02-21
    • Editorial/Editor
      UMA Editorial
    • Palabras clave
      Aprendizaje automático (Inteligencia artificial) - Tesis doctorales; Sistemas de comunicaciones inalámbricos
    • Resumen
      The rapid emergence of next-generation use cases, including metaverse applications, has redefined the landscape of services and applications, enabling immersive experiences across sectors such as education, industry, and entertainment. These innovations demand advanced mobile network capabilities, including high data rates, reduced latency, and enhanced reliability. While 5G technologies address some of these requirements, they also introduce complexities in managing diverse, resource-intensive services. Traditional network management strategies, reliant on human expertise and Operations Support Systems (OSS), have evolved toward automated solutions like Self-Organizing Networks (SON), yet challenges persist. This thesis addresses these challenges by integrating Artificial Intelligence (AI) and Machine Learning (ML) techniques into next-generation network management. Specifically, it focuses on the end-to-end (E2E) optimization of service performance through Key Quality Indicators (KQIs), which capture both network and user-centric metrics. A comprehensive literature review identifies KQIs critical for advanced services such as Cloud Gaming, 360-degree video, and Cloud Virtual Reality. Empirical analysis is conducted using testbeds under controlled conditions to assess service performance across various wireless technologies, mobility scenarios, and radio conditions. The research emphasizes the 360-degree video service to demonstrate the efficacy of ML in network optimization. A dataset generated from these studies enables the development of an ML-based framework to predict KQIs using radio and network data. The framework incorporates the proposed PET$_{score}$ metric, which balances prediction accuracy and computational efficiency. Additionally, a resource optimization mechanism integrates ML-based resource models and numerical optimization to ensure Service-Level Agreement (SLA) compliance while balancing Quality of Experience (QoE) and resource usage.
    • URI
      https://hdl.handle.net/10630/38241
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_PEÑAHERRERA_PULLA, Oswaldo Sebastián.pdf (2.531Mb)
    Colecciones
    • Tesis doctorales

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA