Mostrar el registro sencillo del ítem

dc.contributor.authorCamero Unzueta, Andres
dc.contributor.authorToutouh-el-Alamin, Jamal 
dc.contributor.authorFerrer-Urbano, Francisco Javier 
dc.contributor.authorAlba-Torres, Enrique 
dc.date.accessioned2025-02-03T11:56:46Z
dc.date.available2025-02-03T11:56:46Z
dc.date.issued2019-08-23
dc.identifier.citationCamero, A., Toutouh, J., Ferrer, J., & Alba, E. (2019). Predicción de la producción de residuos con incertidumbre en la ciudad inteligente mediante neuroevolución profunda. Revista Facultad De Ingeniería Universidad De Antioquia, (93), 128–138.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/37641
dc.description.abstractThe unsustainable development of countries has created a problem due to the unstoppable waste generation. Moreover, waste collection is carried out following a pre-defined route that does not take into account the actual level of the containers collected. Therefore, optimizing the way the waste is collected presents an interesting opportunity. In this study, we tackle the problem of predicting the waste generation ratio in real-world conditions, i.e., under uncertainty. Particularly, we use a deep neuroevolutionary technique to automatically design a recurrent network that captures the filling level of all waste containers in a city at once, and we study the suitability of our proposal when faced to noisy and faulty data. We validate our proposal using a real-world case study, consisting of more than two hundred waste containers located in a city in Spain, and we compare our results to the state-of-the-art. The results show that our approach exceeds all its competitors and that its accuracy in a real-world scenario, i.e., under uncertain data, is good enough for optimizing the waste collection planning.es_ES
dc.description.sponsorshipThis research was partially funded by Ministerio de Economía, Industria y Competitividad, Gobierno de España, and European Regional Development Fund grant numbers TIN2016-81766-REDT (http://cirti.es), and TIN2017-88213-R (http://6city.lcc.uma.es). European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 799078. Universidad de Málaga, Campus Internacional de Excelencia Andalucía TECH.es_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Antioquiaes_ES
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectComputación evolutivaes_ES
dc.subjectCiudades - Efectos de las innovaciones tecnológicases_ES
dc.subjectResiduoses_ES
dc.subject.otherDeep neuroevolutiones_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherSmart citieses_ES
dc.subject.otherWaste collectiones_ES
dc.titleWaste generation prediction under uncertainty in smart cities through deep neuroevolution.es_ES
dc.typejournal articlees_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.identifier.doi10.17533/udea.redin.20190736
dc.type.hasVersionVoRes_ES
dc.departamentoLenguajes y Ciencias de la Computación
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem