JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Background subtraction by probabilistic modeling of patch features learned by deep autoencoders.

    • Autor
      García-González, Jorge; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2020-08-01
    • Palabras clave
      Aprendizaje automático
    • Resumen
      Video sequence analysis systems must be able to operate for long periods of time and they must attempt that the different events that can affect the quality of the input data do not diminish the performance of the system to an excessive extent. In this work a method called Probabilistic Mixture of Deeply Autoencoded Patch Features (PMDAPF) is proposed. A Deep Autoencoder is the cornerstone of the methodology for robust background modeling and foreground detection that is presented in this document. Its purpose is to obtain a reduced set of significant features from each patch belonging to one of the several shifted tilings of the video frames. Then, a probabilistic model is responsible for determining whether the whole patch belongs to the background or not. Foreground pixel detection takes into account the information of all patches in which the pixel is included. The robustness of the proposal, as well as its suitability to the uninterrupted analysis and processing of visual information, is reflected in the experiments, in which the performance of the proposed system is affected slightly whereas those of the classic methods are degraded drastically.
    • URI
      https://hdl.handle.net/10630/37218
    • DOI
      https://dx.doi.org/10.3233/ICA-200621
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICAE_postprint_Background_subtraction_by_probabilistic_modeling_of_patch_features_learned_by_deep_autoencoders.pdf (1.826Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA