JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Detection of unfavourable urban areas with higher temperatures and lack of green spaces using satellite imagery in sixteen Spanish cities

    • Autor
      Rodríguez-Gómez, Francisco; Fernández Cañero, Rafael; Pérez, Gabriel; Del-Campo-Ávila, JoséAutoridad Universidad de Málaga; López-Rodríguez, DomingoAutoridad Universidad de Málaga; Pérez-Urrestarazu, Luis
    • Fecha
      2022-12
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Satélites artificiales en teledetección
    • Resumen
      This paper seeks to identify the most unfavourable areas of a city in terms of high temperatures and the absence of green infrastructure. An automatic methodology based on remote sensing and data analysis has been developed and applied in sixteen Spanish cities with different characteristics. Landsat-8 satellite images were selected for each city from the July-August period of 2019 and 2020 to calculate the spatial variation of land surface temperature (LST). The Normalized Difference Vegetation Index (NDVI) was used to determine the abundance of vegetation across the city. Based on the NDVI and LST maps created, a k-means unsupervised classification clustering was performed to automatically identify the different clusters according to how favourable these areas were in terms of temperature and presence of vegetation. A Disadvantaged Area Index (DAI), combining both variables, was developed to produce a map showing the most unfavourable areas for each city. Overall, the percentage of the area susceptible to improvement with more vegetation in the cities studied ranged from 13 % in Huesca to 64–65 % in Bilbao and Valencia. The influence of several factors, such as the presence of water bodies or large buildings, is discussed. Detecting unfavourable areas is a very interesting tool for defining future planning strategy for green spaces.
    • URI
      https://hdl.handle.net/10630/36574
    • DOI
      https://dx.doi.org/10.1016/j.ufug.2022.127783
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    paper.pdf (7.028Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA