JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    OneSpace: Detecting cross-language clones by learning a common embedding space

    • Autor
      Elarnaoty, Mohammed; Servant-Cortés, Francisco JavierAutoridad Universidad de Málaga
    • Fecha
      2024
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Software - Diseño
    • Resumen
      Identifying clone code fragments across different languages can enhance the productivity of software developers in several ways. However, the clone detection task is often studied in the context of a single language and less explored for code snippets spanning different languages. In this paper, we present OneSpace, a new cross-language clone detection approach. OneSpace projects different programming languages to the same embedding space using both code and API data. OneSpace, hence, leverages a Siamese Network to infer the similarity of the embedded programs. We evaluate OneSpace by detecting clones across three language pairs; JAVA-Python, Java-C++ and Java-C. We compared OneSpace with the other state-of-art techniques, SupLearn and CLCDSA. In our evaluation, OneSpace provided higher effectiveness than the state of the art. Our ablation study validated some of our intuitions in designing OneSpace, particularly that using a single embedding space (as opposed to separate ones) provides higher effectiveness. Additionally, we designed a variant of OneSpace that uses Word-Mover-Distance Algorithm and provides lower effectiveness, but is much more efficient. We also found that OneSpace provides higher effectiveness than the state of the art, even for: complex implementations, single-method implementations, varying ratios of positive to negative clones in training, varying amounts of training data, and for additional programming languages.
    • URI
      https://hdl.handle.net/10630/35608
    • DOI
      https://dx.doi.org/10.1016/j.jss.2023.111911
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2024-JSS-Elarnaoty-3-self-archival.pdfEmbargado hasta: 2025-11-22 (1.272Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA