JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Automatic Prediction of Developers’ Resolutions for Software Merge Conflicts

    • Autor
      Aldndni, Waad; Meng, Na; Servant-Cortés, Francisco JavierAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Software - Diseño
    • Resumen
      In collaborative software development, developers simultaneously work in parallel on different branches that they merge periodically. When edits from different branches textually overlap, conflicts may occur. Manually resolving conflicts can be tedious and error-prone. Researchers proposed tool support for conflict resolution, but these tools barely consider developers’ preferences. Conflicts can be resolved by: keeping the local version only KL, keeping the remote version only (KR), or manually editing them (ME). Recent studies show that developers resolved the majority of textual conflicts by KL or KR. Thus, we created a machine learning-based approach RPredictor to predict developers’ resolution strategy (KL, KR, or ME) given a merge conflict. We did large-scale experiments on the historical resolution of 74,861 conflicts. Our experiments show that RPredictor achieved 63% F-score for within-project prediction and 46% F-score for cross-project prediction. Compared with other classifiers, RPredictor provides the highest effectiveness when using a random forest (RF) classifier. Finally, we proposed a variant technique RPredictorv , which enables developers to customize its prediction conservativeness. For a highly conservative setting, RPredictorv achieved 34% effort saving while minimizing the risk of producing incorrect prediction labels.
    • URI
      https://hdl.handle.net/10630/35607
    • DOI
      https://dx.doi.org/10.1016/j.jss.2023.111836
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2023-JSS-Aldndni-3-self-archival.pdfEmbargado hasta: 2025-09-07 (933.1Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA