JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Fast and Accurate Incremental Feedback for Students’ Software Tests Using Selective Mutation Analysis.

    • Autor
      Kazerouni, Ayaan M.; Davis, James C.; Basak, Arinjoy; Shaffer, Clifford A.; Servant-Cortés, Francisco JavierAutoridad Universidad de Málaga; Edwards, Stephen H.
    • Editor/a de la obra
      Wong, W. Eric
    • Fecha
      2021
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Software - Evaluación
    • Resumen
      As incorporating software testing into programming assignments becomes routine, educators have begun to assess not only the correctness of students’ software, but also the adequacy of their tests. In practice, educators rely on code coverage measures, though its shortcomings are widely known. Mutation analysis is a stronger measure of test adequacy, but it is too costly to be applied beyond the small programs developed in introductory programming courses. We demonstrate how to adapt mutation analysis to provide rapid automated feedback on software tests for complex projects in large programming courses. We study a dataset of 1389 student software projects ranging from trivial to complex. We begin by showing that although the state-of-the-art in mutation analysis is practical for providing rapid feedback on projects in introductory courses, it is prohibitively expensive for the more complex projects in subsequent courses. To reduce this cost, we use a statistical procedure to select a subset of mutation operators that maintains accuracy while minimizing cost. We show that with only 2 operators, costs can be reduced by a factor of 2–3 with negligible loss in accuracy. Finally, we evaluate our approach on open-source software and report that our findings may generalize beyond our educational context.
    • URI
      https://hdl.handle.net/10630/35532
    • DOI
      https://dx.doi.org/10.1016/j.jss.2021.110905
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2021-JSS-Kazerouni-4-published.pdf (887.2Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA