Mostrar el registro sencillo del ítem

dc.contributor.authorTrujillo-Vilches, Francisco Javier 
dc.contributor.authorMartín-Béjar, Sergio 
dc.contributor.authorBañón-García, Fermín 
dc.contributor.authorAndersson, Tobias
dc.contributor.authorSevilla-Hurtado, Lorenzo 
dc.date.accessioned2024-12-05T10:28:00Z
dc.date.available2024-12-05T10:28:00Z
dc.date.issued2024
dc.identifier.citationF.J. Trujillo, S. Martín-Béjar, F. Bañón, T. Andersson, L. Sevilla, Ann-based predictive model of geometrical deviations in dry turning of AA7075 (Al-Zn) alloy, Measurement, Volume 243, 2025, 116355, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2024.116355es_ES
dc.identifier.urihttps://hdl.handle.net/10630/35525
dc.description.abstractThis work presents the use of a shallow feedforward artificial neural network (ANN) to develop a prediction model for geometrical deviations in the dry turning of the AA7075 (Al-Zn) alloy. The study focuses on the influence of cutting speed and feed on the arithmetic mean roughness, straightness, and circular runout of cylindrical specimens. The main novelty of this ANN-based model compared to traditional models lies in the simultaneous consideration of geometrical variables at macro and micro scales. The analysis showed that feed was the most influential variable, particularly at higher values, whereas cutting speed had a lesser impact. For all three analysed output variables, the optimal results were achieved by combining low feed and high cutting speed values. The proposed ANN model showed a reasonable adjusted R2 value for all the variables, ranging from 0.87 to 0.97. The ANN performance was compared with other regression models, providing a better fit to the experimental data for all the output variables analysed. Testing of the ANN on additional data not included in the training and validation set confirmed its practical usefulness for predicting geometrical deviations under the studied cutting conditions.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA. This work has received funding from the Ministerio de Ciencia e Innovación (Gobierno de España), through the research project “Expert system for improving surface integrity in sustainable machining of light alloys (SPAREMETAL)”, with reference PID2021-125988OB-I00. The authors thank the Universidad de Málaga for their contribution to this work, which has received funding from the “II Plan Propio de Investigación, Transferencia y Divulgación Científica” of the Universidad de Málaga, through a grant for a research internship at the School of Engineering Science of the University of Skövde (Sweden).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAleaciones ligerases_ES
dc.subject.otherLight alloyses_ES
dc.subject.otherSustainable machininges_ES
dc.subject.otherSurface integrityes_ES
dc.subject.otherArtificial neural networkses_ES
dc.subject.otherMachine learninges_ES
dc.titleAnn-based predictive model of geometrical deviations in dry turning of AA7075 (Al-Zn) alloyes_ES
dc.typejournal articlees_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.identifier.doihttps://doi.org/10.1016/j.measurement.2024.116355
dc.departamentoIngeniería Civil, de Materiales y Fabricación
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem