Most industrial optimization problems are sparse and can be formulated as block- separable mixed-integer nonlinear programming (MINLP) problems, defined by linking low-dimensional sub-problems by (linear) coupling constraints. This paper investigates the potential of using decomposition and a novel multiobjective-based column and cut generation approach for solving nonconvex block-separable MIN- LPs, based on the so-called resource-constrained reformulation. Based on this approach, two decomposition-based inner- and outer-refinement algorithms are presented and preliminary numerical results with nonconvex MINLP instances are reported.