Mostrar el registro sencillo del ítem
A filtration associated to an abelian inner ideal and the speciality of the subquotient of a Lie algebra.
dc.contributor.author | García, Esther | |
dc.contributor.author | Gómez-Lozano, Miguel Ángel | |
dc.contributor.author | Muñoz-Alcázar, Rubén José | |
dc.contributor.editor | Dobrev, Vladimir | |
dc.date.accessioned | 2024-10-25T06:40:58Z | |
dc.date.available | 2024-10-25T06:40:58Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://hdl.handle.net/10630/34899 | |
dc.description | Política de acceso abierto tomada de: https://www.springernature.com/gp/open-science/policies/book-policies | es_ES |
dc.description.abstract | For any abelian inner ideal B of a Lie algebra L such that [B, KerB]^n ⊆ B for some natural n, we build a bounded filtration whose first nonzero term is B and the extremes of the induced Z-graded Lie algebra coincide with the subquotient (B, L/KerB). Thanks to this fi ltration, we can prove that when a Lie algebra L is strongly prime and KerB is not a subalgebra of L, then subquotient (B, L=KerB) is a special strongly prime Jordan pair. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | Álgebras de Lie | es_ES |
dc.subject | Categorías (Matemáticas) | es_ES |
dc.subject.other | Lie algebra | es_ES |
dc.subject.other | Subquotient | es_ES |
dc.subject.other | Filtration | es_ES |
dc.subject.other | Speciality | es_ES |
dc.title | A filtration associated to an abelian inner ideal and the speciality of the subquotient of a Lie algebra. | es_ES |
dc.type | info:eu-repo/semantics/bookPart | es_ES |
dc.centro | Facultad de Ciencias | es_ES |
dc.identifier.doi | 10.1007/978-981-19-4751-3 | |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |