Mostrar el registro sencillo del ítem

dc.contributor.authorJiménez-Partinen, Ariadna
dc.contributor.authorMolina-Cabello, Miguel Ángel 
dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorPalomo-Ferrer, Esteban José 
dc.contributor.authorRodríguez Capitán, Jorge
dc.contributor.authorMolina Ramos, Ana Isabel
dc.contributor.authorJiménez-Navarro, Manuel Francisco 
dc.date.accessioned2024-10-09T08:46:54Z
dc.date.available2024-10-09T08:46:54Z
dc.date.created2024
dc.date.issued2024
dc.identifier.citationJiménez-Partinen, A., Molina-Cabello, M. A., Thurnhofer-Hemsi, K., Palomo, E. J., Rodríguez-Capitán, J., Molina-Ramos, A. I., & Jiménez-Navarro, M. (2024). CADICA: A new dataset for coronary artery disease detection by using invasive coronary angiography. Expert Systems, e13708. https://doi.org/10.1111/exsy.13708es_ES
dc.identifier.urihttps://hdl.handle.net/10630/34542
dc.description.abstractCoronary artery disease (CAD) remains the leading cause of death globally and invasive coronary angiography (ICA) is considered the gold standard of anatomical imaging evaluation when CAD is suspected. However, risk evaluation based on ICA has several limitations, such as visual assessment of stenosis severity, which has significant interobserver variability. This motivates to development of a lesion classification system that can support specialists in their clinical procedures. Although deep learning classification methods are well-developed in other areas of medical imaging, ICA image classification is still at an early stage. One of the most important reasons is the lack of available and high-quality open-access datasets. In this paper, we reported a new annotated ICA images dataset, CADICA, to provide the research community with a comprehensive and rigorous dataset of coronary angiography consisting of a set of acquired patient videos and associated disease-related metadata. This dataset can be used by clinicians to train their skills in angiographic assessment of CAD severity, by computer scientists to create computer-aided diagnostic systems to help in such assessment, and to validate existing methods for CAD detection. In addition, baseline classification methods are proposed and analysed, validating the functionality of CADICA with deep learning-based methods and giving the scientific community a starting point to improve CAD detection.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga/CBUAes_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSistema cardiovascular-Enfermedadeses_ES
dc.subjectInformática-Aplicacioneses_ES
dc.subjectDiagnóstico por imagenes_ES
dc.subjectArterias coronarias-Enfermedadeses_ES
dc.subject.otherCardiovascular artery diseasees_ES
dc.subject.otherClassificationes_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherMedical imageses_ES
dc.subject.otherInvasive coronary angiography datasetes_ES
dc.titleCADICA: A new dataset for coronary artery disease detectionby using invasive coronary angiographes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.identifier.doihttps://doi.org/10.1111/exsy.13708
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional