JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    CADICA: A new dataset for coronary artery disease detectionby using invasive coronary angiograph

    • Autor
      Jiménez-Partinen, Ariadna; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Thurnhofer-Hemsi, Karl; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; Rodríguez Capitán, Jorge; Molina Ramos, Ana Isabel; Jiménez-Navarro, Manuel FranciscoAutoridad Universidad de Málaga
    • Fecha
      2024
    • Editorial/Editor
      Wiley
    • Palabras clave
      Sistema cardiovascular-Enfermedades; Informática-Aplicaciones; Diagnóstico por imagen; Arterias coronarias-Enfermedades
    • Resumen
      Coronary artery disease (CAD) remains the leading cause of death globally and invasive coronary angiography (ICA) is considered the gold standard of anatomical imaging evaluation when CAD is suspected. However, risk evaluation based on ICA has several limitations, such as visual assessment of stenosis severity, which has significant interobserver variability. This motivates to development of a lesion classification system that can support specialists in their clinical procedures. Although deep learning classification methods are well-developed in other areas of medical imaging, ICA image classification is still at an early stage. One of the most important reasons is the lack of available and high-quality open-access datasets. In this paper, we reported a new annotated ICA images dataset, CADICA, to provide the research community with a comprehensive and rigorous dataset of coronary angiography consisting of a set of acquired patient videos and associated disease-related metadata. This dataset can be used by clinicians to train their skills in angiographic assessment of CAD severity, by computer scientists to create computer-aided diagnostic systems to help in such assessment, and to validate existing methods for CAD detection. In addition, baseline classification methods are proposed and analysed, validating the functionality of CADICA with deep learning-based methods and giving the scientific community a starting point to improve CAD detection.
    • URI
      https://hdl.handle.net/10630/34542
    • DOI
      https://dx.doi.org/https://doi.org/10.1111/exsy.13708
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Expert Systems - 2024 - Jiménez‐Partinen - CADICA A new dataset for coronary artery disease detection by using invasive.pdf (2.074Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA