JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Preference-Based Evolutionary Multiobjective Optimization Through the Use of Reservation and Aspiration Points

    • Autor
      González-Gallardo, Sandra; Saborido Infantes, Rubén; Ruiz-Mora, Ana BelénAutoridad Universidad de Málaga; Luque-Gallego, MarianoAutoridad Universidad de Málaga
    • Fecha
      2021
    • Editorial/Editor
      IEEE (Institute of Electrical and Electronics Engineers)
    • Palabras clave
      Optimización matemática; Algoritmos
    • Resumen
      Preference-based Evolutionary Multiobjective Optimization (EMO) algorithms approximate the region of interest (ROI) of the Pareto optimal front defined by the preferences of a decision maker (DM). Here, we propose a preference-based EMO algorithm, in which the preferences are given by means of aspiration and reservation points. The aspiration point is formed by objective values which the DM wants to achieve, while the reservation point is constituted by values for the objectives not to be worsened. Internally, the first generations are performed in order to generate an initial approximation set according to the reservation point. Next, in the remaining generations, the algorithm adapts the search for new non-dominated solutions depending on the dominance relation between the solutions obtained so far and both the reservation and aspiration points. This allows knowing if the given points are achievable or not; this type of information cannot be known before the solution process starts. On this basis, the algorithm proceeds according to three different scenarios with the aim of re-orienting the search directions towards the ROI formed by the Pareto optimal solutions with objective values within the given aspiration and reservation values. Computational results show the potential of our proposal in 2, 3 and 5-objective test problems, in comparison to other state- of-the-art algorithms.
    • URI
      https://hdl.handle.net/10630/34313
    • DOI
      https://dx.doi.org/10.1109/ACCESS.2021.3101899
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Preference-Based_Evolutionary_Multiobjective_Optimization_Through_the_Use_of_Reservation_and_Aspiration_Points.pdf (5.863Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA