JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Adaptive Global WASF-GA to Handle. Many-objective Optimization Problems

    • Autor
      Luque-Gallego, MarianoAutoridad Universidad de Málaga; González-Gallardo, Sandra; Saborido Infantes, Rubén; Ruiz-Mora, Ana BelénAutoridad Universidad de Málaga
    • Fecha
      2020
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Computación evolutiva; Análisis vectorial
    • Resumen
      In this paper, a new version of the aggregation-based evolutionary algorithm Global WASF-GA (GWASF-GA) for many-objective optimization is proposed, called Adaptive Global WASF-GA (A-GWASF-GA). The fitness function of GWASF-GA is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, which considers two reference points (the nadir and utopian points) and a set of weight vectors. Despite of the benefits of using these two reference points simultaneously and a well-distributed set of weight vectors, it is necessary to go a step further to get better approximations in problems with complicated Pareto optimal fronts. For this, in A-GWASF-GA, some of the weight vectors are re-calculated during the optimization process based on the sparsity of the solutions found so far, and taking into account some theoretical results demonstrated in this paper regarding the ASF considered. Different strategies are carried out to accelerate the convergence and to maintain the diversity. The computational results, carried out in comparison with RVEA, NSGA-III, and different versions of MOEA/D, show the potential of A-GWASF-GA in well-known but also in novel many-objective optimization benchmark problems.
    • URI
      https://hdl.handle.net/10630/34307
    • DOI
      https://dx.doi.org/10.1016/j.swevo.2020.100644
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Adaptive_Global_WASF_GA_to_HandleMany_objective_Optimization_Problems.pdf (3.392Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA