JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Continuous Chemical Classification in Uncontrolled Environments with Sliding Windows.

    • Autor
      González-Monroy, JavierAutoridad Universidad de Málaga; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Gonzalez-Jimenez, Antonio Javier
    • Fecha
      2016-09-03
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Gases - Análisis; Robótica; Olfato
    • Resumen
      Electronic noses are sensing devices able to classify chemical volatiles according to the readings of an array of non-selective gas sensors and some pattern recognition algorithm. Given their high versatility to host multiple sensors while still being compact and lightweight, e-noses have demonstrated to be a promising technology to real-world chemical recognition, which is our main concern in this work. Under these scenarios, classification is usually carried out on sub-sequences of the main e-nose data stream after a segmentation phase which objective is to exploit the temporal correlation of the e-nose’s data. In this work we analyze to which extent considering segments of delayed samples by means of fixed-length sliding windows improves the classification accuracy. Extensive experimentation over a variety of experimental scenarios and gas sensor types, together with the analysis of the classification accuracy of three state-of-the-art classifiers, support our conclusions and findings. In particular, it has been found that fixed-length sliding windows attain better results than instantaneous sensor values for several classifier models, with a high statistical significance.
    • URI
      https://hdl.handle.net/10630/34300
    • DOI
      https://dx.doi.org/10.1016/j.chemolab.2016.08.011
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2016_Classification_Sliding_Windows_ChemoLab.pdf (3.338Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA