JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Predicting the onset of major depression in primary care: international validation of a risk prediction algorithm from Spain

    • Autor
      Bellón-Saameño, Juan ÁngelAutoridad Universidad de Málaga; Luna-del-Castillo, Juan de Dios; Moreno-Kustner, BertaAutoridad Universidad de Málaga; Gil-de-Gómez-Barragán, María Josefa; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Ángel; Vicens-Caldentey, Catalina; Cervilla, Jorge; Svab, Igor; Maaroos, Heidi-Ingrid; Xavier, Miguel; Geerlings, Mirjam I; Saldivia, Sandra; Gutiérrez, Blanca; Motrico, Emma; Martínez-Cañavate, María Teresa; Oliván-Blázquez, Bárbara; Vázquez-Medrano, Ana; Sánchez-Artiaga, María Soledad; March, Sebastiá; Muñoz-García, María del Mar; Moreno Peral, Patricia; Torres-González, Francisco
    • Fecha
      2011
    • Editorial/Editor
      Cambridge Universtity Press
    • Palabras clave
      Depresión mental; Atención primaria
    • Resumen
      Context: The different incidence rates of major depression and its associated risk factors suggest the need for specific national rather than supranational risk algorithms. Objectives: Develop and validate a predictD-Spain-risk-algorithm for the onset of major depression and compare the performance of the predictD-Spain-risk-algorithm with the predictDEurope-risk-algorithm in Spanish primary health care. Setting: Health Centers in Europe and South-America. Participants: In Spain (4574), Chile (2133) and other 5 European countries (5184), 11891 non depressed adult primary care attendees formed our at risk population. Main Outcome Measures: DSM-IV major depression (Composite International Diagnostic Interview). Results: The predictD-Spain-risk-algorithm was developed in 2787 primary care attendees in Spain and its use validated in Chile (1844) and five other European countries (4075). Six variables were patient characteristics or past events (sex, age, sex*age interaction, education, physical child abuse, and lifetime depression) and six were current status (SF-12-physical-score, SF-12-mental-score, dissatisfaction with unpaid work, number of serious problems in very close persons, dissatisfaction with living together at home, and taking medication for stress, anxiety or depression). Province was the thirteenth factor. The C-index of the predictD-Spain-risk-algorithm was 0.82 (95%CI=0.79-0.84) and in other countries it ranged between 0.70-0.83. Both the test for C-index differences (difference=0.0316; 95%CI=0.0121-0.0530; p<0.0022) and calibration plots showed that the predictD-Spain-risk-algorithm functioned better than the predictD-Europe-risk-algorithm in Spain. However, this did not hold true when 69 applied to other countries in Europe or Chile.
    • URI
      https://hdl.handle.net/10630/34125
    • DOI
      https://dx.doi.org/10.1017/S0033291711000468
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Predicting the onset of major depression (JA Bellon et al.).pdf (1.210Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA