Mostrar el registro sencillo del ítem

dc.contributor.authorPastor-Martín, Francisco
dc.contributor.authorGandarias Palacios, Juan Manuel
dc.contributor.authorGarcía-Cerezo, Alfonso José 
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel 
dc.date.accessioned2024-09-30T11:26:14Z
dc.date.available2024-09-30T11:26:14Z
dc.date.issued2019-12-05
dc.identifier.citationPastor, F.; Gandarias, J.M.; García-Cerezo, A.J.; Gómez-de-Gabriel, J.M. Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation. Sensors 2019, 19, 5356. https://doi.org/10.3390/s19245356es_ES
dc.identifier.urihttps://hdl.handle.net/10630/34034
dc.description.abstractIn this paper, a novel method of active tactile perception based on 3D neural networks and a high-resolution tactile sensor installed on a robot gripper is presented. A haptic exploratory procedure based on robotic palpation is performed to get pressure images at different grasping forces that provide information not only about the external shape of the object, but also about its internal features. The gripper consists of two underactuated fingers with a tactile sensor array in the thumb. A new representation of tactile information as 3D tactile tensors is described. During a squeeze-and-release process, the pressure images read from the tactile sensor are concatenated forming a tensor that contains information about the variation of pressure matrices along with the grasping forces. These tensors are used to feed a 3D Convolutional Neural Network (3D CNN) called 3D TactNet, which is able to classify the grasped object through active interaction. Results show that 3D CNN performs better, and provide better recognition rates with a lower number of training data.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDetectoreses_ES
dc.subjectRobóticaes_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subject.otherTactile perceptiones_ES
dc.subject.otherRobotic palpationes_ES
dc.subject.otherUnderactuated gripperses_ES
dc.subject.otherDeep learninges_ES
dc.titleUsing 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.identifier.doi10.3390/s19245356
dc.rights.ccAttribution 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 Internacional