JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Quad-RRT: a real-time GPU-based global path planner in large-scale real environments

    • Autor
      Hidalgo-Paniagua, Alejandro; Bandera-Rubio, Juan PedroAutoridad Universidad de Málaga; Ruiz-de-Quintanilla, Manuel; Bandera Rubio, Antonio
    • Fecha
      2018-06-01
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Telecomunicación; Tecnología; Electrónica
    • Resumen
      During the last decade, sampling based methods for motion and path planning have gained more interest. Specifically, in the field of robotics, approaches based on the Rapidly-exploring Random Tree (RRT) algorithm have become the customary technique for solving the single-query motion planning problem. However, dynamic large maps still represent a challenging scenario for these methods to produce fast enough results. Taking advantage of an NVidia CUDA-enabled Graphic Processing Unit (GPU), we present quad-RRT, an extension of the bi-directional strategy to speed up the RRT when dealing with large-scale, bidimensional (2D) maps. Designed for modern GPUs, quad-RRT computes four trees instead of the two ones built by the bidirectional approaches. This modification aims balancing the direct searching ability of these methods with the parallel exploration of those parts of the map at both sides of the path joining the initial and goal poses. Experimental results demonstrate that the proposed algorithm provides a significant speedup dealing with large-scale maps densely populated by obstacles, when compared to other implementations of the RRT. Hence, the algorithm can have a high impact in the field of inspection path planning for distributed infrastructure. It is also a promising approach to allow new generation robots, designed to work in unconstrained environments, dynamically plan large-scale paths.
    • URI
      https://hdl.handle.net/10630/34023
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.01.035
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Quad_RRT__a_real_time_GPU_based_global_path_planner_in_large_scale_real_environments.pdf (4.994Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA