Service robotics involves the design of robots that work in a dynamic and very open environment, usually shared with people. In this scenario, it is very difficult for decision-making processes to be completely closed at design time, and it is necessary to define a certain variability that will be closed at runtime. MAPE-K (Monitor–Analyze–Plan–Execute over a shared Knowledge) loops are a very popular scheme to address this real-time self-adaptation. As stated in their own definition, they include monitoring, analysis, planning, and execution modules, which interact through a knowledge model. As the problems to be solved by the robot can be very complex, it may be necessary for several MAPE loops to coexist simultaneously in the robotic software architecture endowed in the robot. The loops will then need to be coordinated, for which they can use the knowledge model, a representation that will include information about the environment and the robot, but also about the actions being executed. This paper describes the use of a graph-based representation, the Deep State Representation (DSR), as the knowledge component of the MAPE-K scheme applied in robotics. The DSR manages perceptions and actions, and allows for inter- and intra-coordination of MAPE-K loops. The graph is updated at runtime, representing symbolic and geometric information. The scheme has been successfully applied in a retail intralogistics scenario, where a pallet truck robot has to manage roll containers for satisfying requests from human pickers working in the warehouse.