JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A survey on learning approaches for Undirected Graphical Models. Application to scene object recognition

    • Autor
      Ruiz-Sarmiento, José RaúlAutoridad Universidad de Málaga; Galindo-Andrades, CiprianoAutoridad Universidad de Málaga; González-Jiménez, Antonio JavierAutoridad Universidad de Málaga
    • Fecha
      2017
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Reconocimiento de formas (Informática)
    • Resumen
      Probabilistic Graphical Models (PGMs) in general, and Undirected Graphical Models (UGMs) in particular, become suitable frameworks to capture and conveniently model the uncertainty inherent in a variety of problems. When applied to real world applications, such as scene object recognition, they turn into a reliable and widespread resorted tool. The effectiveness of UGMs is tight to the particularities of the problem to be solved and, especially, to the chosen learning strategy. This paper presents a review of practical, widely resorted learning approaches for Conditional Random Fields (CRFs), the discriminate variant of UGMs, which is completed with a thorough comparison and experimental analysis in the field of scene object recognition. The chosen application for UGMs is of particular interest given its potential for enhancing the capabilities of cognitive agents. Two state-of-the-art datasets, NYUv2 and Cornell-RGBD, containing intensity and depth imagery from indoor scenes are used for training and testing CRFs. Results regarding success rate, computational burden, and scalability are analyzed, including the benefits of using parallelization techniques for gaining in efficiency.
    • URI
      https://hdl.handle.net/10630/33862
    • DOI
      https://dx.doi.org/10.1016/j.ijar.2016.10.009
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2017 - IJAR - A Survey on Learning Approaches for Undirected Graphical Models.pdf (1.517Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA