JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Improving Hardware Transactional Memory Parallelization of Computational Geometry Algorithms Using Privatizing Transactions.

    • Autor
      Quislant-del-Barrio, RicardoAutoridad Universidad de Málaga; Gutiérrez-Carrasco, Eladio DamiánAutoridad Universidad de Málaga; López-Zapata, EmilioAutoridad Universidad de Málaga; Plata-González, Óscar GuillermoAutoridad Universidad de Málaga
    • Fecha
      2019-05-06
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Hardware; Algoritmos computacionales
    • Resumen
      Hardware transactional memory is a new parallel programming paradigm supported by current commercial multiprocessors. This paradigm provides optimistic concurrency and overcomes some of the problems associated with classical lock-based synchronization, such as deadlock and serialization. Certain algorithms of computational geometry are found to be good candidates for parallelization with this paradigm. However, hardware transactional approaches to these algorithms lead to poor performance as the resulting transactions are too large for the underlying hardware to deal with. Large transactions overflow hardware resources serializing the execution. In this paper, we propose using privatizing transactions to parallelize two computational geometry algorithms: Lee’s algorithm, which solves the shortest-route problem, and Ruppert’s algorithm for Delaunay/Voronoi mesh refinement. Privatizing transactions are based on commercial hardware transactional memory extensions, and their goal is to reduce transaction footprint by means of a non-transactional private execution section. This results in effective smaller transactions. Our implementation is able to further reduce the transaction size as we propose a reduced validation set for privatizing transactions. Programming complexity of these implementations is discussed. Results show that our privatizing transaction implementations indeed enhance performance comparing with existing hardware transactional memory versions. Experiments with Intel’s transactional memory extensions yield speedups ranging from 2x to 3.5x with four threads.
    • URI
      https://hdl.handle.net/10630/33456
    • DOI
      https://dx.doi.org/10.1016/j.jpdc.2019.04.018
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    paper.pdf (842.3Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA