JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Portable motorized telescope system for wind turbine blades damage detection

    • Autor
      Carnero, Alejandro; Martín-Fernández, CristianAutoridad Universidad de Málaga; Díaz-Rodríguez, ManuelAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      Wiley
    • Palabras clave
      Turbinas eólicas
    • Resumen
      Wind turbines are among the fastest-growing sources of energy production and the maintenance operations include regular inspection of their blades, causing considerable downtime and cost. In addition, the manual inspection process involves a great risk. To address this challenge, in this article a preventive maintenance system for wind turbines based on deep computational learning techniques is presented. This open-source project aims to detect and classify possible surface damages on wind turbine blades to facilitate and improve the inspection of such infrastructures. The system consists of a stand-alone Android application that makes use of convolutional neural networks for image processing, a portable telescope to take precise photographs of the turbine blades, and a motorized mount that allows the movement of the telescope. The application tries to carry out a complete sweep of the surface of the wind turbine blades in an autonomous way based on the predictions of neural network models and finally presents the defects found to the user. Thanks to this, maintenance time would be reduced and the risk of manual intervention would be avoided. Accuracies of around 97% for label predictions and 90% for bounding box coordinate predictions have been achieved on the validation dataset. The proposed low-cost inspection system for detecting surface damages on blades has been experimentally validated in a real wind farm.
    • URI
      https://hdl.handle.net/10630/33360
    • DOI
      https://dx.doi.org/10.1002/eng2.12618
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Engineering Reports - 2023 - Carnero - Portable motorized telescope system for wind turbine blades damage detection.pdf (5.345Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA