Mostrar el registro sencillo del ítem
On the speciality of Jordan algebras and subquotients of Lie algebras
dc.contributor.author | García, Esther | |
dc.contributor.author | Gómez-Lozano, Miguel Ángel | |
dc.contributor.author | Muñoz-Alcázar, Rubén José | |
dc.date.accessioned | 2024-09-25T16:59:11Z | |
dc.date.available | 2024-09-25T16:59:11Z | |
dc.date.issued | 2020-09-01 | |
dc.identifier.citation | Esther García, Miguel Gómez Lozano, Rubén Muñoz Alcázar, On the speciality of Jordan algebras and subquotients of Lie algebras, Journal of Algebra, Volume 563, 2020, Pages 426-441, ISSN 0021-8693, https://doi.org/10.1016/j.jalgebra.2020.07.013. (https://www.sciencedirect.com/science/article/pii/S0021869320303719) | es_ES |
dc.identifier.uri | https://hdl.handle.net/10630/33310 | |
dc.description.abstract | In this paper we study conditions on the own structure of the Lie algebras that imply the specialty of these Jordan algebras. Similar results are obtained when dealing with subquotients associated to abelian inner ideals | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | Lie, Algebras de | es_ES |
dc.subject.other | Lie algebra | es_ES |
dc.subject.other | Jordan algebra | es_ES |
dc.subject.other | Subquotient | es_ES |
dc.subject.other | Speciality | es_ES |
dc.title | On the speciality of Jordan algebras and subquotients of Lie algebras | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.identifier.doi | 10.1016/j.jalgebra.2020.07.013 | |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |