JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Data-Driven Screening of Network Constraints for Unit Commitment

    • Autor
      Pineda-Morente, SalvadorAutoridad Universidad de Málaga; Morales-González, Juan MiguelAutoridad Universidad de Málaga; Jiménez-Cordero, María AsunciónAutoridad Universidad de Málaga
    • Fecha
      2020
    • Editorial/Editor
      IEEE Xplore
    • Palabras clave
      Redes eléctricas
    • Resumen
      The transmission-constrained unit commitment (TC-UC) problem is one of the most relevant problems solved by independent system operators for the daily operation of power systems. Given its computational complexity, this problem is usually not solved to global optimality for real-size power systems. In this paper, we propose a data-driven method that leverages historical information to screen out network constraints in the TC-UC problem. First, past data on demand and renewable generation throughout the network are used to learn the congestion status of transmission lines. Then, we infer the lines that will not become congested for upcoming operating conditions based on such learning and disregard their capacity constraints. This way, we formulate a reduced TC-UC problem that is easier to solve. Numerical results on a medium- and a large-size power system show that the proposed approach outperforms existing ones by significantly reducing the computational time while obtaining solutions that are equal or close to the one obtained with the original TC-UC problem. Furthermore, the purely data-driven method we propose can be seamlessly complemented with a constraint generation procedure to guarantee that the optimal solution to the original TC-UC problem is eventually recovered.
    • URI
      https://hdl.handle.net/10630/33193
    • DOI
      https://dx.doi.org/10.1109/TPWRS.2020.2980212
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Data-driven.pdf (232.2Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA