JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Unmasking Nasality to Assess Hypernasality

    • Autor
      Moreno-Torres-Sánchez, IgnacioAutoridad Universidad de Málaga; Lozano, Andres; Bermúdez-de-Alvear, Rosa MaríaAutoridad Universidad de Málaga; Pino, Josue; Garcia-Mendez, María Dolores; Nava-Baro, EnriqueAutoridad Universidad de Málaga
    • Fecha
      2023-11-23
    • Editorial/Editor
      MDPI
    • Palabras clave
      Hipernasalidad
    • Resumen
      Automatic evaluation of hypernasality has been traditionally computed using monophonic signals (i.e., combining nose and mouth signals). Here, this study aimed to examine if nose signals serve to increase the accuracy of hypernasality evaluation. Using a conventional microphone and a Nasometer, we recorded monophonic, mouth, and nose signals. Three main analyses were performed: (1) comparing the spectral distance between oral/nasalized vowels in monophonic, nose, and mouth signals; (2) assessing the accuracy of Deep Neural Network (DNN) models in classifying oral/nasal sounds and vowel/consonant sounds trained with nose, mouth, and monophonic signals; (3) analyzing the correlation between DNN-derived nasality scores and expert-rated hypernasality scores. The distance between oral and nasalized vowels was the highest in the nose signals. Moreover, DNN models trained on nose signals outperformed in nasal/oral classification (accuracy: 0.90), but were slightly less precise in vowel/consonant differentiation (accuracy: 0.86) compared to models trained on other signals. A strong Pearson’s correlation (0.83) was observed between nasality scores from DNNs trained with nose signals and human expert ratings, whereas those trained on mouth signals showed a weaker correlation (0.36). We conclude that mouth signals partially mask the nasality information carried by nose signals. Significance: the accuracy of hypernasality assessment tools may improve by analyzing nose signals.
    • URI
      https://hdl.handle.net/10630/33114
    • DOI
      https://dx.doi.org/10.3390/app132312606
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    applsci-13-12606.pdf (3.197Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA