JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Which Utterance Types Are Most Suitable to Detect Hypernasality Automatically?

    • Autor
      Moreno-Torres-Sánchez, IgnacioAutoridad Universidad de Málaga; Lozano, Andrés; Nava-Baro, EnriqueAutoridad Universidad de Málaga; Bermúdez-de-Alvear, Rosa MaríaAutoridad Universidad de Málaga
    • Fecha
      2021-09-11
    • Editorial/Editor
      MDPI
    • Palabras clave
      Hipernasalidad
    • Resumen
      Automatic tools to detect hypernasality have been traditionally designed to analyze sustained vowels exclusively. This is in sharp contrast with clinical recommendations, which consider it necessary to use a variety of utterance types (e.g., repeated syllables, sustained sounds, sentences, etc.) This study explores the feasibility of detecting hypernasality automatically based on speech samples other than sustained vowels. The participants were 39 patients and 39 healthy controls. Six types of utterances were used: counting 1-to-10 and repetition of syllable sequences, sustained consonants, sustained vowel, words and sentences. The recordings were obtained, with the help of a mobile app, from Spain, Chile and Ecuador. Multiple acoustic features were computed from each utterance (e.g., MFCC, formant frequency) After a selection process, the best 20 features served to train different classification algorithms. Accuracy was the highest with syllable sequences and also with some words and sentences. Accuracy increased slightly by training the classifiers with between two and three utterances. However, the best results were obtained by combining the results of multiple classifiers. We conclude that protocols for automatic evaluation of hypernasality should include a variety of utterance types. It seems feasible to detect hypernasality automatically with mobile devices.
    • URI
      https://hdl.handle.net/10630/33113
    • DOI
      https://dx.doi.org/10.3390/app11198809
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2021-09-26 applsci-11-08809-v2-versionFinal.pdf (14.79Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA