When the beam waist at the receiver is significantly larger than the receiver size, free-space optical (FSO) links may be vulnerable to some optical tapping risks at the physical layer. In this paper, we conduct a new framework for the analysis of the secrecy performance in terms of the secrecy outage probability (SOP) of FSO systems affected by gamma-gamma (GG) turbulence induced fading channels with pointing errors. As a key feature, we evaluate the SOP in the presence of an external eavesdropper with generic location and orientation. For that reason, a new misalignment error model is proposed to consider a non-orthogonal optical beam with respect to the photodetector plane at the eavesdropper’s receiver, where the effective area is determined by a rotated ellipse. New approximate and asymptotic solutions at high signal-to-noise-ratio (SNR) for the secrecy performance are obtained in closed-form, which are verified by exact Monte Carlo simulations. By using the developed expressions, we analyze in greater detail some effects such as the SNR of the eavesdropper’s channel, the normalized beamwidth at the receiver-side, and the location and orientation of the eavesdropper on the secrecy performance for different turbulence conditions.