JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Probabilistic Tsunami Hazard Analysis: High Performance Computing for Massive Scale Inundation Simulations

    • Autor
      Gibbons, Steven; Lorito, Stefano; Macías-Sánchez, JorgeAutoridad Universidad de Málaga; Lovholt, Finn; Selva, Jacopo; Volpe, Manuela; Sánchez-Linares, Carlos; Babeyko, Andrey; Brizuela, Beatriz; Cirella, Antonella; Castro, Manuel Jesús; de la Asunción, Marc; Lanucara, Piero; Glimsdal, Sylfest; Lorenzino, Maria Concetta; Nazaria, Massimo; Pizzimenti, Luca; Romano, Fabrizio; Scala, Antonio; Tonini, Roberto; González-Vida, José ManuelAutoridad Universidad de Málaga; Vöge, Malte
    • Fecha
      2020-12-11
    • Editorial/Editor
      Frontiers
    • Palabras clave
      Maremotos
    • Resumen
      Probabilistic Tsunami Hazard Analysis (PTHA) quantifies the probability of exceeding a specified inundation intensity at a given location within a given time interval. PTHA provides scientific guidance for tsunami risk analysis and risk management, including coastal planning and early warning. Explicit computation of site-specific PTHA, with an adequate discretization of source scenarios combined with high-resolution numerical inundation modelling, has been out of reach with existing models and computing capabilities, with tens to hundreds of thousands of moderately intensive numerical simulations being required for exhaustive uncertainty quantification. In recent years, more efficient GPU-based High-Performance Computing (HPC) facilities, together with efficient GPU-optimized shallow water type models for simulating tsunami inundation, have now made local long-term hazard assessment feasible. A workflow has been developed with three main stages: 1) Site-specific source selection and discretization, 2) Efficient numerical inundation simulation for each scenario using the GPU-based Tsunami-HySEA numerical tsunami propagation and inundation model using a system of nested topo-bathymetric grids, and 3) Hazard aggregation. We apply this site-specific PTHA workflow here to Catania, Sicily, for tsunamigenic earthquake sources in the Mediterranean. We illustrate the workflows of the PTHA as implemented for High-Performance Computing applications, including preliminary simulations carried out on intermediate scale GPU clusters. We show how the local hazard analysis conducted here produces a more fine-grained assessment than is possible with a regional assessment.
    • URI
      https://hdl.handle.net/10630/32905
    • DOI
      https://dx.doi.org/10.3389/feart.2020.591549
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Probabilistic_Tsunami_Hazard.pdf (6.868Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA