JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Probabilistic tsunami forecasting for early warning

    • Autor
      Selva, Jacopo; Lorito, Stefano; Volpe, Manuela; Romano, Fabrizio; Tonini, Roberto; Perfetti, Paolo; Bernardi, Fabrizio; Taroni, Matteo; Scala, Antonio; Babeyko, Andrey; Lovholt, Finn; Gibbons, Steven; Macías, Jorge; Castro, Manuel Jesús; González-Vida, José ManuelAutoridad Universidad de Málaga; Sánchez-Linares, Carlos; Bayraktar, Hafize Basak; Basili, Roberto; Maesano, Francisco Emanuele; Tiberti, Mara; Mele, Francesco; Piatanesi, Alessandro; Amato, Alessandro
    • Fecha
      2021-09-28
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Maremotos
    • Resumen
      Tsunami warning centres face the challenging task of rapidly forecasting tsunami threat immediately after an earthquake, when there is high uncertainty due to data deficiency. Here we introduce Probabilistic Tsunami Forecasting (PTF) for tsunami early warning. PTF expli- citly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs- false-alarms. Impact forecasts and resulting recommendations become progressively less uncertain as new data become available. Here we report an implementation for near-source early warning and test it systematically by hindcasting the great 2010 M8.8 Maule (Chile) and the well-studied 2003 M6.8 Zemmouri-Boumerdes (Algeria) tsunamis, as well as all the Mediterranean earthquakes that triggered alert messages at the Italian Tsunami Warning Centre since its inception in 2015, demonstrating forecasting accuracy over a wide range of magnitudes and earthquake types.
    • URI
      https://hdl.handle.net/10630/32889
    • DOI
      https://dx.doi.org/10.1038/s41467-021-25815-w
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Probabilistic_tsunami_forecasting.pdf (5.020Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA