JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Deep learning-based super-resolution of 3D magnetic resonance images by regularly spaced shifting

    • Autor
      Thurnhofer-Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga; Domínguez, Enrique; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; Roé-Vellvé, Núria
    • Fecha
      2020-07-20
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Imágenes por resonancia magnética
    • Resumen
      The image acquisition process in the field of magnetic resonance imaging (MRI) does not always provide high resolution results that may be useful for a clinical analysis. Super-resolution (SR) techniques manage to increase the image resolution, being especially effective those based on examples that determine a correspondence between patterns of low resolution and high resolution. Deep learning neural networks have been applied in recent years to estimate this association with very competitive results. In this work, the starting point is a convolutional neuronal network to which a regularly spaced shifting mechanism over the input image is applied, with the aim of substantially improving the quality of the resulting image. This hybrid proposal has been compared with several SR techniques using the peak signal-to-noise ratio, structural similarity index and Bhattacharyya coefficient metrics. The results obtained on different MR images show a considerable improvement both in the restored image and in the residual image without an excessive increase in computing time.
    • URI
      https://hdl.handle.net/10630/32807
    • DOI
      https://dx.doi.org/10.1016/j.neucom.2019.05.107
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Deep learning-based SR of 3D MRI by Regularly Spaced Shifting.pdf (7.065Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA