Mostrar el registro sencillo del ítem

dc.contributor.authorCastro, Francisco M.
dc.contributor.authorMarín-Jiménez, Manuel J.
dc.contributor.authorGuil-Mata, Nicolás 
dc.contributor.authorPérez de la Blanca, Nicolás
dc.date.accessioned2024-09-20T08:50:31Z
dc.date.available2024-09-20T08:50:31Z
dc.date.issued2020
dc.identifier.citationCastro, F.M., Marín-Jiménez, M.J., Guil, N. et al. Multimodal feature fusion for CNN-based gait recognition: an empirical comparison. Neural Comput & Applic 32, 14173–14193 (2020). https://doi.org/10.1007/s00521-020-04811-zes_ES
dc.identifier.urihttps://hdl.handle.net/10630/32705
dc.description.abstractThis paper focuses on identifying people based on their gait using a non-invasive approach. Traditional methods rely on gait signatures derived from binary energy maps, which introduce noise. Instead, the authors explore the use of raw pixel data and compare different Convolutional Neural Network (CNN) architectures across three modalities: gray pixels, optical flow, and depth maps. Tested on the TUM-GAID and CASIA-B datasets, the study finds that (i) raw pixel values are competitive with traditional silhouette-based features, (ii) combining pixel data with optical flow and depth maps yields state-of-the-art results even at lower image resolutions, and (iii) the choice of CNN architecture significantly impacts performance.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Londones_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArquitectura de ordenadoreses_ES
dc.subject.otherGait recognitiones_ES
dc.subject.otherConvolutional neural networkes_ES
dc.subject.otherMultimodal fusiones_ES
dc.titleMultimodal feature fusion for CNN-based gait recognition: an empirical comparisones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doi10.1007/s00521-020-04811-z
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional