Mostrar el registro sencillo del ítem
A cross-dataset deep learning-based classifier for people fall detection and identification
dc.contributor.author | Delgado-Escaño, Rubén | |
dc.contributor.author | Castro, Francisco M. | |
dc.contributor.author | Ramos-Cózar, Julián | |
dc.contributor.author | Marín-Jiménez, Manuel J. | |
dc.contributor.author | Guil-Mata, Nicolás | |
dc.contributor.author | Casilari-Pérez, Eduardo | |
dc.date.accessioned | 2024-09-19T10:51:24Z | |
dc.date.available | 2024-09-19T10:51:24Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Rubén Delgado-Escaño, Francisco M. Castro, Julián R. Cózar, Manuel J. Marín-Jiménez, Nicolás Guil, Eduardo Casilari, A cross-dataset deep learning-based classifier for people fall detection and identification, Computer Methods and Programs in Biomedicine, Volume 184, 2020, 105265, ISSN 0169-2607, https://doi.org/10.1016/j.cmpb.2019.105265. (https://www.sciencedirect.com/science/article/pii/S0169260719311770) | es_ES |
dc.identifier.uri | https://hdl.handle.net/10630/32673 | |
dc.description.abstract | This paper addresses the issue of fall detection, particularly for elderly individuals who may live alone and be unable to call for help after a fall. The objective is to develop a deep learning-based approach that can detect falls and identify individuals without needing model fine-tuning for different datasets. The proposed method uses a multi-task learning model that processes raw inertial data to simultaneously detect falls and identify people. The model achieves over 98% accuracy in fall detection across four datasets, with less than 1.6% false positives, and identifies people with an average accuracy of 79.6%. It operates in real-time, requiring no retraining for new subjects, making it suitable for practical implementation. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Ancianos - Protección, asistencia, etc. - Innovaciones tecnológicas | es_ES |
dc.subject.other | Fall detection | es_ES |
dc.subject.other | Activities of daily living | es_ES |
dc.subject.other | Inertial sensors | es_ES |
dc.subject.other | Convolutional neural network | es_ES |
dc.subject.other | Long short-term memory | es_ES |
dc.subject.other | Multi-task | es_ES |
dc.title | A cross-dataset deep learning-based classifier for people fall detection and identification | es_ES |
dc.type | journal article | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2019.105265 | |
dc.type.hasVersion | SMUR | es_ES |
dc.departamento | Arquitectura de Computadores | |
dc.rights.accessRights | open access | es_ES |