JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A global prediction model for sudden stops of capital flows using decision trees.

    • Autor
      Salas-Compás, María BelénAutoridad Universidad de Málaga; Alaminos, David; Fernández, Manuel Ángel; López-Valverde, FranciscoAutoridad Universidad de Málaga
    • Fecha
      2020-02-12
    • Editorial/Editor
      PLOS
    • Palabras clave
      Circulación de capitales - Modelos econométricos; Árboles de decisión
    • Resumen
      Capital flows is an important aspect of the international monetary system because they pro- vide great direct and indirect benefits, and at the same time, they carry risks of vulnerability for countries with an open economy. Numerous works have studied the behavior of these flows and have developed models to predict sudden stop events. However, the existing models have limitations and the literature demands more research on the subject given that the accuracy of the models is still poor, and they have only been developed for emerging countries. This paper presents a new prediction model of sudden stop events of capital flows for both emerging countries and developed countries with the ability to estimate accu- rately future sudden stop scenarios globally. A sample of 103 countries was used, including 73 emerging countries and 30 developed countries, which has allowed the use of sample combinations that consider the regional heterogeneity of the warning indicators. To the sam- ple under study, a method of decision trees has been applied, which has provided excellent prediction results given its ability to learn characteristics and create long-term dependencies from sequential data and time series. Our model has a great potential impact on the ade- quacy of macroeconomic policy against the risks derived from sudden stops of capital flows, providing tools that help to achieve financial stability at the global level.
    • URI
      https://hdl.handle.net/10630/32284
    • DOI
      https://dx.doi.org/10.1371/journal.pone.0228387
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1.AModelPredictionModelSS12_02_20.pdf (2.102Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA