JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Exploiting medical-expert knowledge via a novel memetic algorithm for the inference of gene regulatory networks.

    • Autor
      Segura Ortiz, Adrián; García-Nieto, José ManuelAutoridad Universidad de Málaga; Aldana-Montes, José FranciscoAutoridad Universidad de Málaga
    • Fecha
      2024
    • Palabras clave
      Optimización matemática; Bioinformática
    • Resumen
      This study introduces an innovative memetic algorithm for optimizing the consensus of well-adapted techniques for the inference of gene regulation networks. Building on the methodology of a previous proposal (GENECI), this research adds a local search phase that incorporates prior knowledge about gene interactions, thereby enhancing the optimization process under the influence of domain expert. The algorithm focuses on the evaluation of candidate solutions through a detailed evolutionary process, where known gene interactions guide the evolution of such solutions (individuals). This approach was subjected to rigorous testing using benchmarks from editions 3 and 4 of the DREAM challenges and the yeast network of IRMA, demonstrating a significant improvement in accuracy compared to previous related approaches. The results highlight the effectiveness of the algorithm, even when only 5% of the known interactions are used as a reference. This advancement represents a significant step in the inference of gene regulation networks, providing a more precise and adaptable tool for genomic research.
    • URI
      https://hdl.handle.net/10630/32061
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICCS24_Enviado.pdf (1.792Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA