Mostrar el registro sencillo del ítem

dc.contributor.authorLozano Cuadra, Federico
dc.contributor.authorSoret, Beatriz
dc.date.accessioned2024-07-08T11:19:57Z
dc.date.available2024-07-08T11:19:57Z
dc.date.issued2024
dc.identifier.citationF. Lozano-Cuadra and B. Soret, “Multi-Agent Deep Reinforcement Learning for Distributed Satellite Routing”, in Proc. IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 2024.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/31966
dc.descriptionUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.description.abstractThis paper introduces a Multi-Agent Deep Rein- forcement Learning (MA-DRL) approach for routing in Low Earth Orbit Satellite Constellations (LSatCs). Each satellite is an independent decision-making agent with a partial knowledge of the environment, and supported by feedback received from the nearby agents. Building on our previous work that introduced a Q-routing solution, the contribution of this paper is to extend it to a deep learning framework able to quickly adapt to the network and traffic changes, and based on two phases: (1) An offline exploration learning phase that relies on a global Deep Neural Network (DNN) to learn the optimal paths at each possible position and congestion level; (2) An online exploitation phase with local, on-board, pre-trained DNNs. Results show that MA- DRL efficiently learns optimal routes offline that are then loaded for an efficient distributed routing online.es_ES
dc.description.sponsorshipF. Lozano-Cuadra (flozano@ic.uma.es) and B. Soret are with the Telecom- munications Research Institute, University of Malaga, 29071, Malaga, Spain. This work is partially funded by ESA SatNEx V (prime contract no. 4000130962/20/NL/NL/FE), and by the Spanish Ministerio de Ciencia, Inno- vacio ́n y Universidades (PID2022-136269OB-I00).es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectComunicaciones vía satélitees_ES
dc.subject.otherReinforcement Learninges_ES
dc.subject.otherSatellite communicationses_ES
dc.subject.otherMachine Learninges_ES
dc.subject.otherDeep Learninges_ES
dc.subject.otherMulti-Agent Deep Reinforcement Learninges_ES
dc.titleMulti-Agent Deep Reinforcement Learning for Distributed Satellite Routing.es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.relation.eventtitleIEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)es_ES
dc.relation.eventplaceEstocolmo, Sueciaes_ES
dc.relation.eventdate05/2024es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem