JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Using energy consumption for self-adaptation in FaaS.

    • Autor
      Serrano Gutiérrez, Pablo; Ayala-Viñas, InmaculadaAutoridad Universidad de Málaga
    • Fecha
      2024
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Internet de los objetos
    • Resumen
      One of the programming models that has been developing the most in recent years is Function as a Service (FaaS). The growing concern over data centre energy footprints has driven sustainable software development. In serverless applications, energy consumption depends on the energy consumption of the application’s functions. However, measuring energy proves challenging, and the results’ variability complicates optimisation efforts at runtime. This article addresses this issue by measuring serverless function energy consumption and exploring integration into an optimisation system that selects implementations based on their current energy footprint. For this, we have integrated an energy measurement software into a FaaS system. We have analysed how to properly process the data and how to use them to perform self-adaptation. We present a series of methods and policies that make our system not only capable of detecting variations in the energy consumption of the functions, but it does so taking into account the variability in the measurements that each function may present. Our experiments showcase proper integration in a self-adaptive system, showing a reduction up to 5% in energy consumption due to functions in a test application.
    • URI
      https://hdl.handle.net/10630/31964
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICSR_final.pdfEmbargado hasta: 2025-09-01 (843.1Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA