JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Water transport across the membrane of a direct toluene electro-hydrogenation electrolyzer: Experiments and modelling

    • Autor
      Atienza Márquez, Antonio; Oi, Shota; Araki, Takuto; Mitsushima, Shigenori
    • Fecha
      2024
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Electroósmosis; Tolueno; Hidrógeno
    • Resumen
      Toluene/methylcyclohexane is a promising liquid organic hydride for hydrogen storage and transport under ambient conditions. Direct toluene electro-hydrogenation electrolyzers, utilizing proton exchange membrane technology, offer benefits in reducing the reversible decomposition voltage and eliminating theoretical heat losses associated with conventional hydrogenation methods. Nevertheless, water transport across the membrane can inhibit the supply of toluene to reaction sites at the cathode. This study investigates water transport across the Nafion™ 117 membrane of an in-house electrolyzer cell, employing sulfuric acid and toluene solutions as the anode and cathode reactant, respectively, and operating at current densities from 0.1 to 0.8 A/cm2. The experiments show that the cathode toluene concentration has a negligible effect on drag water, while water flux increases with electric current and decreases with higher anode sulfuric acid concentrations. The modelling approach assumes electro-osmosis and diffusion mechanisms govern water transport. Simulations predict a linear decrease in the electro-osmotic drag coefficient from 2.3 to 1.6 as the sulfuric acid concentration rises from 0.1 to 1.5 mol/L, while the back diffusion flux increases linearly up to 2 mg/(min·cm2). These findings closely align with experimental data and previous literature, despite the high complexity of water transport in polymer electrolyte membranes.
    • URI
      https://hdl.handle.net/10630/31794
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.energy.2024.132186
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0360544224019601-main.pdf (4.673Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA