Mostrar el registro sencillo del ítem

dc.contributor.authorMaza Quiroga, Rosa María
dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorLópez-Rodríguez, Domingo 
dc.contributor.authorLópez-Rubio, Ezequiel 
dc.date.accessioned2024-05-29T09:17:02Z
dc.date.available2024-05-29T09:17:02Z
dc.date.issued2021
dc.identifier.citationMaza-Quiroga, R., Thurnhofer-Hemsi, K., López-Rodríguez, D., López-Rubio, E. (2021). Rician Noise Estimation for 3D Magnetic Resonance Images Based on Benford’s Law. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_33es_ES
dc.identifier.urihttps://hdl.handle.net/10630/31428
dc.descriptionPolítica de acceso abierto tomada de: https://www.springernature.com/gp/open-research/policies/book-policies
dc.description.abstractIn this paper, a novel method to estimate the level of Rician noise in magnetic resonance images is presented. We hypothesize that noiseless images follow Benford's law, that is, the probability distribution of the first digit of the image values is logarithmic. We show that this is true when we consider the raw acquired image in the frequency domain. Two measures are then used to quantify the (dis)similarity between the actual distribution of the fi rst digits and the more theoretical Benford's law: the Bhattacharyya coefficient and the Kullback-Leibler divergence. By means of these measures, we show that the amount of noise directly affects the distribution of the fi rst digits, thereby making it deviate from Benford's law. In addition, in this work, these findings are used to design a method to estimate the amount of Rician noise in an image. The utilization of supervised machine learning techniques (linear regression, polynomial regression, and random forest) allows predicting the parameters of the Rician noise distribution using the dissimilarity between the measured distribution and Benford's law as the input variable for the regression. In our experiments, testing over magnetic resonance images of 75 individuals from four different repositories, we empirically show that these techniques are able to precisely estimate the noise level present in the test T1 images.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectImágenes por resonancia magnética - Ruidoes_ES
dc.subject.otherMRIes_ES
dc.subject.otherRician noisees_ES
dc.subject.otherBenford's lawes_ES
dc.subject.otherNoise estimationes_ES
dc.titleRician noise estimation for 3D Magnetic Resonance Images based on Benford's Law.es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.relation.eventtitleMedical Image Computing and Computer Assisted Intervention (MICCAI 2021)es_ES
dc.relation.eventplaceEstrasburgo (Francia)es_ES
dc.relation.eventdate27/09/2021es_ES
dc.identifier.doi10.1007/978-3-030-87231-1_33
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersion


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem