JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HRþ)/HER2-negative advanced breast cancer patients.

    • Autor
      Ribelles, Nuria; Jerez-Aragonés, José ManuelAutoridad Universidad de Málaga; Rodríguez-Brazzarola, Pablo; Jiménez-Rodríguez, Begoña; Díaz-Redondo, Tamara; Mesa, Héctor; Márquez, Antonia; Sánchez-Muñoz, AlfonsoAutoridad Universidad de Málaga; Pajares, Bella; Carabantes, Francisco; Bermejo-Pérez, María José; Villar, Ester; Domínguez-Recio, María Emilia; Saez-Lara, Enrique; Gálvez Carvajal, Laura; Godoy-Ortiz, Ana; Franco, LeónardoAutoridad Universidad de Málaga; Ruiz-Medina, Sofía; López, Irene; Alba-Conejo, EmilioAutoridad Universidad de Málaga
    • Fecha
      2021
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Mamas - Cáncer; Proceso en lenguaje natural (Informática)
    • Resumen
      Background: CDK4/6 inhibitors plus endocrine therapies are the current standard of care in the first-line treatment of HRþ/HER2-negative metastatic breast cancer, but there are no well-established clinical or molecular predictive factors for patient response. In the era of personalised oncology, new approaches for developing predictive models of response are needed. Materials and methods: Data derived from the electronic health records (EHRs) of real-world patients with HRþ/HER2-negative advanced breast cancer were used to develop predictive models for early and late progression to first-line treatment. Two machine learning approaches were used: a classic approach using a data set of manually extracted features from reviewed (EHR) patients, and a second approach using natural language processing (NLP) of freetext clinical notes recorded during medical visits. Results: Of the 610 patients included, there were 473 (77.5%) progressions to first-line treatment, of which 126 (20.6%) occurred within the first 6 months. There were 152 patients (24.9%) who showed no disease progression before 28 months from the onset of first-line treatment. The best predictive model for early progression using the manually extracted dataset achieved an area under the curve (AUC) of 0.734 (95% CI 0.687e0.782). Using the NLP free-text processing approach, the best model obtained an AUC of 0.758 (95% CI 0.714 e0.800). The best model to predict long responders using manually extracted data obtained an AUC of 0.669 (95% CI 0.608e0.730). With NLP free-text processing, the best model attained an AUC of 0.752 (95% CI 0.705e0.799). Conclusions: Using machine learning methods, we developed predictive models for early and late progression to first-line treatment of HRþ/HER2-negative metastatic breast cancer, also finding that NLP-based machine learning models are slightly better than predictive models based on manually obtained data.
    • URI
      https://hdl.handle.net/10630/31244
    • DOI
      https://dx.doi.org/10.1016/j.ejca.2020.11.030
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Machine learning EJC-D-20-02078R1 Clean Revised version (1).pdf (244.2Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA