Mostrar el registro sencillo del ítem

dc.contributor.authorGarralon-López, Rubén
dc.contributor.authorRus-Mansilla, Francisco de Asís 
dc.contributor.authorVillatoro-Machuca, Francisco Román 
dc.date.accessioned2024-04-12T13:00:37Z
dc.date.available2024-04-12T13:00:37Z
dc.date.issued2024-03-28
dc.identifier.citationRubén Garralon-López, Francisco Rus, Francisco R. Villatoro, Numerical adiabatic perturbation theory for the absolute |K|(p,p) equation, Mathematics and Computers in Simulation, 2024, , ISSN 0378-4754, https://doi.org/10.1016/j.matcom.2024.03.031. (https://www.sciencedirect.com/science/article/pii/S0378475424001113)es_ES
dc.identifier.urihttps://hdl.handle.net/10630/31023
dc.description.abstractIn physical applications, the absolute equation should be preferred to the widely used Rosenau–Hyman equation due to the robustness of its compactons and anticompactons interactions observed in numerical simulations with small hyperviscosity. In order to understand the effect of the hyperviscosity in solutions with multiple compactons of the equation, the adiabatic perturbation theory has been applied. For a single compacton, this theory can be solved analytically showing that the second invariant decreases for smaller than a critical value, as expected for a dissipative perturbation, but increases otherwise. This analytical prediction is in good agreement with the numerical results. In order to predict the evolution of the second invariant in time as a function of the hyperviscosity parameter for general solutions of the equation, a numerical implementation of the adiabatic perturbation theory has been developed. This adiabatic numerical prediction agrees with the evolution of the second invariant in the propagation of a single compacton, the generation of compacton trains from a truncated cosine initial condition, and compacton–compacton chase collisions. However, discrepancies emerge in other scenarios, such as the generation of a compacton train from a dilated compacton and in compacton–anticompacton chase collisions. Our findings support the use of the numerical adiabatic perturbation theory for analyzing the evolution of invariants due to hyperviscosity in multi-compacton simulationses_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPerturbación (Matemáticas)es_ES
dc.subjectMatemáticas aplicadases_ES
dc.subject.otherCompactonses_ES
dc.subject.otherNonlinear dispersiones_ES
dc.subject.otherNumerical simulationes_ES
dc.subject.otherNumerically-induced phenomenaes_ES
dc.subject.otherAdiabatic perturbation theoryes_ES
dc.titleNumerical adiabatic perturbation theory for the absolute equationes_ES
dc.typejournal articlees_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.identifier.doi10.1016/j.matcom.2024.03.031
dc.type.hasVersionVoRes_ES
dc.departamentoLenguajes y Ciencias de la Computación
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem