JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Nash implementation of supermajority rules

    • Autor
      Amorós-González, PabloAutoridad Universidad de Málaga
    • Fecha
      2024-02-23
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Probabilidades; Selección de personal
    • Resumen
      A committee of n experts from a university department must choose whom to hire from a set of m candidates. Their honest judgments about the best candidate must be aggregated to determine the socially optimal candidates. However, experts’ judgments are not verifiable. Furthermore, the judgment of each expert does not necessarily determine his preferences over candidates. To solve this problem, a mechanism that implements the socially optimal aggregation rule must be designed. We show that the smallest quota q compatible with the existence of a q-supermajoritarian and Nash implementable aggregation rule is A committee of n experts from a university department must choose whom to hire from a set of m candidates. Their honest judgments about the best candidate must be aggregated to determine the socially optimal candidates. However, experts’ judgments are not verifiable. Furthermore, the judgment of each expert does not necessarily determine his preferences over candidates. To solve this problem, a mechanism that implements the socially optimal aggregation rule must be designed. We show that the smallest quota q compatible with the existence of a q-supermajoritarian and Nash implementable aggregation rule is q = n −⌊n−1m⌋. Moreover, for such a rule to exist, there must be at least m ⌊n−1 m⌋+ 1 impartial experts with respect to each pair of candidates.
    • URI
      https://hdl.handle.net/10630/30761
    • DOI
      https://dx.doi.org/10.1007/s00182-024-00888-1
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    s00182-024-00888-1.pdf (1.254Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA