JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Dynamic learning rates for continual unsupervised learning.

    • Autor
      Fernández-Rodríguez, Jose David; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; Ramos-Jiménez, Gonzalo PascualAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      IOS Press
    • Palabras clave
      Aprendizaje automático (Inteligencia artificial)
    • Resumen
      The dilemma between stability and plasticity is crucial in machine learning, especially when non-stationary input distributions are considered. This issue can be addressed by continual learning in order to alleviate catastrophic forgetting. This strategy has been previously proposed for supervised and reinforcement learning models. However, little attention has been devoted to unsupervised learning. This work presents a dynamic learning rate framework for unsupervised neural networks that can handle non-stationary distributions. In order for the model to adapt to the input as it changes its characteristics, a varying learning rate that does not merely depend on the training step but on the reconstruction error has been proposed. In the experiments, different configurations for classical competitive neural networks, self-organizing maps and growing neural gas with either per-neuron or per-network dynamic learning rate have been tested. Experimental results on document clustering tasks demonstrate the suitability of the proposal for real-world problems.
    • URI
      https://hdl.handle.net/10630/30312
    • DOI
      https://dx.doi.org/10.3233/ICA-230701
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICAE_Continual_Learning_preprint.pdf (489.1Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA