JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Automated detection of vehicles with anomalous trajectories in traffic surveillance videos.

    • Autor
      Fernández-Rodríguez, Jose David; García-González, Jorge; Benítez-Rochel, RafaelaAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga; Ramos-Jiménez, Gonzalo PascualAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2023-05-10
    • Editorial/Editor
      IOS Press
    • Palabras clave
      Videovigilancia electrónica; Visión artificial (Robótica); Demodulación (Electrónica)
    • Resumen
      Video feeds from traffic cameras can be useful for many purposes, the most critical of which are related to monitoring road safety. Vehicle trajectory is a key element in dangerous behavior and traffic accidents. In this respect, it is crucial to detect those anomalous vehicle trajectories, that is, trajectories that depart from usual paths. In this work, a model is proposed to automatically address that by using video sequences from traffic cameras. The proposal detects vehicles frame by frame, tracks their trajectories across frames, estimates velocity vectors, and compares them to velocity vectors from other spatially adjacent trajectories. From the comparison of velocity vectors, trajectories that are very different (anomalous) from neighboring trajectories can be detected. In practical terms, this strategy can detect vehicles in wrong-way trajectories. Some components of the model are off-the-shelf, such as the detection provided by recent deep learning approaches; however, several different options are considered and analyzed for vehicle tracking. The performance of the system has been tested with a wide range of real and synthetic traffic videos.
    • URI
      https://hdl.handle.net/10630/30222
    • DOI
      https://dx.doi.org/10.3233/ICA-230706
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICAE_Automated_detection_preprint.pdf (1.533Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA