Mostrar el registro sencillo del ítem
Real-time embedded eye detection system
dc.contributor.author | Ruiz-Beltrán, Camilo Andrés | |
dc.contributor.author | Romero-Garces, Adrian | |
dc.contributor.author | González-García, Martín | |
dc.contributor.author | Sánchez-Pedraza, Antonio | |
dc.contributor.author | Rodríguez-Fernández, Juan Antonio | |
dc.contributor.author | Bandera-Rubio, Antonio Jesús | |
dc.date.accessioned | 2024-02-08T10:15:00Z | |
dc.date.available | 2024-02-08T10:15:00Z | |
dc.date.issued | 2022-05 | |
dc.identifier.citation | Camilo A. Ruiz-Beltrán, Adrián Romero-Garcés, Martín González, Antonio Sánchez Pedraza, Juan A. Rodríguez-Fernández, Antonio Bandera, Real-time embedded eye detection system, Expert Systems with Applications, Volume 194, 2022, 116505, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.116505. | es_ES |
dc.identifier.uri | https://hdl.handle.net/10630/30087 | |
dc.description.abstract | The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola–Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | Ojos - Reconocimiento | es_ES |
dc.subject.other | Eye detection | es_ES |
dc.subject.other | Viola–Jones algorithm | es_ES |
dc.subject.other | All programmable System-on-Chip | es_ES |
dc.title | Real-time embedded eye detection system | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.centro | E.T.S.I. Telecomunicación | es_ES |
dc.identifier.doi | https://doi.org/10.1016/j.eswa.2022.116505 | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es_ES |