Mostrar el registro sencillo del ítem

dc.contributor.authorCarpena-Sánchez, Pedro Juan 
dc.contributor.authorBernaola-Galván, Pedro Ángel 
dc.contributor.authorGómez Extremera, Manuel
dc.contributor.authorCoronado-Jiménez, Ana Victoria 
dc.date.accessioned2024-02-06T13:01:32Z
dc.date.available2024-02-06T13:01:32Z
dc.date.created2019
dc.date.issued2020-08-21
dc.identifier.urihttps://hdl.handle.net/10630/29925
dc.descriptionPolítica de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/9866?template=romeoes_ES
dc.description.abstractThe observable outputs of many complex dynamical systems consist in time series exhibiting autocorrelation functions of great diversity of behaviors, including long-range power-law autocorre- lation functions, as a signature of interactions operating at many temporal or spatial scales. Often, numerical algorithms able to generate correlated noises reproducing the properties of real time se- ries are used to study and characterize such systems. Typically, those algorithms produce Gaussian time series. However, real, experimentally observed time series are often non-Gaussian, and may follow distributions with a diversity of behaviors concerning the support, the symmetry or the tail properties. Given a correlated Gaussian time series, it is always possible to transform it into a time series with a different distribution, but the question is how this transformation affects the behavior of the autocorrelation function. Here, we study analytically and numerically how the Pearson’s cor- relation of two Gaussian variables changes when the variables are transformed to follow a different destination distribution. Specifically, we consider bounded and unbounded distributions, symmetric and non-symmetric distributions, and distributions with different tail properties, from decays faster than exponential to heavy tail cases including power-laws, and we find how these properties affect the correlation of the final variables. We extend these results to Gaussian time series which are transformed to have a different marginal distribution, and show how the autocorrelation function of the final non-Gaussian time series depends on the Gaussian correlations and on the final marginal distribution.es_ES
dc.description.sponsorshipConsejerı́a de Conocimiento, Investigación y Universidad, Junta de Andalucía and European Regional Development Fund (ERDF), ref. SOMM17/6105/UGR and FQM-362.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPulso cardíaco - Modelos matemáticoses_ES
dc.subjectProcesado de señaleses_ES
dc.subject.otherPostural control-systemes_ES
dc.subject.otherHeart-rate-variabilityes_ES
dc.subject.otherScaling behaviores_ES
dc.subject.otherSurrogate dataes_ES
dc.subject.otherFractal propertieses_ES
dc.subject.other1/F noisees_ES
dc.subject.otherNonlinearityes_ES
dc.subject.otherDynamicses_ES
dc.titleTransforming Gaussian correlations. Applications to generating long-range power-law correlated time series with arbitrary distributiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.1063/5.0013986
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional